Scalability Limitations of VIA-Based Technologies
1in Supporting MPI

Ron Brightwell and Arthur B. Maccabe

Abstract— This paper analyzes the scalability limitations
of networking technologies based on the Virtual Interface
Architecture (VIA) in supporting the runtime environment
needed for an implementation of the Message Passing Inter-
face. We present an overview of the important character-
istics of VIA and an overview of the runtime system being
developed as part of the Computational Plant (Cplant™)
project at Sandia National Laboratories. We discuss the
characteristics of VIA that prevent implementations based
on this system to meet the scalability and performance re-
quirements of Cplant™.

I. INTRODUCTION

Mainstream computer vendors have realized the need for
more effective access to networking resources. Studies have
proven that, with respect to the actual performance deliv-
ered to applications, wide-area network protocols, such as
TCP/IP and UDP/IP, do not make effective use of the
capability of the underlying network hardware [1]. This
performance loss can be attributed to the computational
overhead associated with kernel-based transport protocol
stacks that enable wide-area networking and the lack of a
globally-accepted programming interface that enables ef-
ficient overlap of communication and computation. This
realization has led to the development of operating system
(OS) bypass protocols, such as the Virtual Interface Ar-
chitecture (VIA) [2], that provide applications with direct
access to the network, reducing the amount of interference
from the host operating systems in data transfers.

More recently, the development of user-level message
passing software technologies has identified performance
bottlenecks in the hardware architecture of PC’s. The PCI
bus has been identified as a source of significant perfor-
mance penalties in user-level message passing. Several ef-
forts were begun to design a new hardware interface to
network components. Among these efforts were Next Gen-
eration I0 (NGIO) and Future IO (FIO). These efforts have
now been consolidated into the InfiniBand Trade Associ-
ation [3]. While the InfiniBand specification is still un-
der development, it will likely have many characteristics in
common with the VIA-based NGIO specification, and most

This work was supported in part by the National Science Founda-
tion CISE Research Infrastructural award CDA-9503064.

R. Brightwell is with the Computational Sciences, Computer
Sciences, and Mathematics Center, Sandia National Laboratories,
P.O. Box 5800 M.S. 1110, Albuquerque, NM, 87111-1110,(505)845-
7432,(505)845-7442 FAX,bright@cs.sandia.gov. Sandia is a multipro-
gram laboratory operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy under contract
DE-AC04-94AL85000

A. B. Maccabe is with the Computer Science Department, The Uni-
versity of New Mexico, FEC 313, Albuquerque, NM, 87131, (505)277-
6504, (505)277-6927 FAX, maccabe@cs.unm.edu

of the performance and scalability limitations of VIA will
still be present despite the new hardware interface.

VIA-capable networking hardware is currently available
from several vendors: Servernet from Compaq, cLAN from
Giganet, and Myrinet from Myricom (when used with a
VIA-based Myrinet Control Program). There are also MPI
implementations available for these networks: MPI/Pro [4]
from MPI Software Technology, Inc., and MVICH [5], a
port of MPICH [6] from the National Energy Research Sci-
entific Computing Center at Lawrence Berkeley National
Lab. This analysis is not intended to be a general in-
dictment of the VIA specification, VIA-based hardware,
or these MPI implementations. Rather, it is intended to
address the ability of these technologies to meet specific
scalability and performance requirements of the Computa-
tional Plant (Cplant™) [7] project.

In the following section, we present a brief introduc-
tion to the performance considerations that have motivated
“zero-copy” and “OS bypass” protocols. In Section III, we
provide background information on the Virtual Interface
Architecture [2]. In Section IV we summarize the features
of MPI that are important in considering very large scale
implementations. In Section V, we describe the Computa-
tional Plant machine and the relevant requirements of its
runtime system. Section VII presents an analysis of poten-
tial difficulties from implementations built on VIA technol-
ogy in meeting these requirements. Section VIII offers some
modifications to the VIA specification that would address
some of the scalability and performance limitations. We
conclude in Section IX with a summary of the important
points of this analysis.

II. BACKGROUND: BASIC ISSUES IN MESSAGE PASSING
ProToCOLS

The improved performance of modern networking tech-
nologies has had a significant impact on the development of
modern networking protocols. When network bandwidth
began to approach the bandwidth of memory copies, proto-
col implementors and designers quickly looked for ways to
eliminate memory copies in message passing protocols. Ul-
timately, this lead to the development of zero-copy message
passing protocols. In these protocols, messages are trans-
mitted from application-space to application-space without
intermediate store-and-forward copies of the message. The
performance cost of any copies incurred between the end-
points of the communication, for example in the network
interface card (NIC), is minimized by pipelining the copy.
With a zero-copy protocol, the bandwidth observed by an
application is the minimum of the network bandwidth and



the bandwidth between the NIC and the memory system.

In designing and implementing zero-copy message pass-
ing protocols, the emphasis has been on the elimination of
intermediate, system buffers that may be used in the oper-
ating system or message passing kernel. Instead of relying
on these intermediate buffers, the protocols transmit in-
coming messages directly into the buffers allocated by the
application. In this context, we should note the zero-cost
copies that have been implemented in a variety of mes-
sage passing systems including Mach [8]. This method re-
ceives incoming messages into system buffers and, instead
of copying the messages to application buffers, simply re-
maps the application’s page table entries so that it now uses
the pages that were used for the system buffers, instead of
its original pages. This approach eliminates the cost of
copying message bodies into the application and can be of
great benefit in some contexts; however, it places severe
alignment restrictions on message reception. The zero-cost
copy is not appropriate when these alignment restrictions
are not reflected in the application level protocol.

While zero-copy protocols are focused on maintaining
end-to-end bandwidth for large messages, they do not ad-
dress the issues of latency. If the NIC is required to inter-
rupt the operating system for every message reception, this
will add a significant latency to the delivery of messages.
On the other hand, if the operating system is not involved
in the reception of messages, the NIC might violate the
protection policies implicit in the operating system. In re-
cent years, a number of protocols have been developed,
including VIA [2] and Scheduled Transfer (ST) [9], that in-
corporate zero-copy and OS bypass. These protocols strive
to incorporate typical OS protection policies in the mes-
sage reception code that is run on the NIC, thus bypassing
the latency that would result from explicitly invoking the
operating system on each message reception. Most of the
OS bypass protocols use UNIX socket-like, pairwise con-
nections between processes to incorporate the OS protec-
tion policies and define the points at which the operating
system needs to be consulted (e.g., when establishing a con-
nection, but not when sending or receiving messages using
an existing connection).

In addition to end-to-end bandwidth and low latency,
processor utilization is another important metric for as-
sessing the effectiveness of a message passing protocol. One
relatively easy way to achieve low latency communication
is to constantly poll the network looking for incoming mes-
sages. As an example, the Intel Paragon has two processors
per compute node. Applications that use SUNMOS (San-
dia/UNM OS) [10] on this machine can select a mode in
which the second processor polls the network or a mode
in which the second processor assists in the computation.
When the second processor polls the network interface,
message passing latencies drop from 27usecto 17usec, a
decrease of 37%. Having the processor poll the network
for incoming messages represents an extreme case of high
processor utilization. Many message passing systems re-
quire processor cycles in ways that are more subtle, but
may prove to be as intrusive. These systems may require

that an application-level thread be invoked to accept de-
livery of large messages, or to manage buffers allocated for
“unexpected” messages. While the need for application-
level threads may not seem too problematic, these threads
complicate the runtime environment needed to support ap-
plications. In addition to increasing the total number of
threads needed to support applications, these communi-
cation threads, by nature, impose significant constraints
on the thread scheduling portion of the runtime system.
In particular, the thread scheduler must be capable of in-
terrupting a thread that is executing a long computation
to ensure that a communication thread is executed in a
timely fashion. At best, this will have an adverse impact
on computation time; in many cases, it may obviate the
advantages of OS bypass.

As part of the Cplant™development effort, we have de-
veloped a new message passing system, Portals 3.0 [11],
that provides application bypass along with zero-copy and
OS bypass. Using the Portals 3.0 API, we can implement,
all of the MPI point-to-point routines while ensuring that
the MPI progress rule is satisfied without the need for any
application-level processing (other than the obvious invo-
cation of the communication routines).

While performance metrics such as high bandwidth, low
latency, and low processor utilization are important, pre-
dictability in these metrics is also important. If, for ex-
ample, the latency for transmitting a 512 byte message is
usually a few tens of microseconds, but occasionally takes a
few milliseconds, application programmers will not be able
to tune codes to take advantage of the high performance
message passing.

ITII. VIA

The Virtual Interface Architecture [2], published by
Compagq, Intel, and Microsoft, is a specification of the in-
terface between high performance network hardware and
computer systems. The goal of this architecture is to re-
duce the latency associated with message passing by low-
ering the amount of system software processing needed to
move data. VIA gives application processes direct access
to the network interface, bypassing the underlying operat-
ing system. This strategy eliminates much of the overhead
in traditional kernel-based protocol stacks.

A virtual interface (VI) is a point-to-point channel es-
tablished between two processes. Each end of the channel
is composed of a send queue and a receive queue. A process
can submit a request, in the form of a descriptor, to either
queue to facilitate a data transfer. The requests are pro-
cessed asynchronously and are updated when the transfer
is completed. Processes can then dequeue completed de-
scriptor and re-use it for a subsequent request.

Prior to submitting a request, the memory to be used in
a transfer must be locked down. This memory registration
process not only insures that the memory to be used is
resident, but also allows the network interface to perform
virtual address validation and translation.

The VIA specification supports the traditional two-sided
send/receive model of communication, as well as a one-



sided remote memory access model.

The send/receive semantics mandate a one-to-one cor-
respondence between send descriptors and receive descrip-
tors. In order for a message to be received, the receiving
process must submit a descriptor that corresponds to a de-
scriptor of the sending process. An error will occur if the
receive descriptor is not submitted or is not of sufficient size
to accept the incoming message. In addition, the specifica-
tion requires that both ends are notified upon completion of
the transfer. VIA also supports gather/scatter operations
by allowing send and receive operations to specify a set of
descriptors to be used in a transfer.

Notification of the completion of a transaction can occur
three ways. First, a process can examine the particular
queue to which a request was submitted. The process can
examine the head of the queue to determine if the request
has been completed. A completed request at the head of
the queue can then be removed.

In addition, a process can create another queue to poll
for requests on a collection of request queues. If a process
opens several virtual connections, each with its own send
and receive queues, notification of completion of all of these
requests can be handled by a single queue. Examining the
head of this one queue allows a process to be notified of the
completion of requests from several different connections.
Once the notification of a completed request is discovered,
the request can be dequeued from the queue to which it
was originally submitted.

Handlers may also be used to signify the completion of a
transaction, although the VIA specification does not fully
address the semantics of handlers. A handler may be at-
tached to a send, receive, or completion queue. When the
descriptor at the head of the queue is complete, the handler
is invoked. The order of handler invocation is unclear. If
a receive queue has an associated completion queue, and
both queues have associated handlers, the order in which
the handlers are invoked upon the completion of a receive
descriptor is unspecified.

All queues are traversed in strict FIFO order. Requests
that are submitted to a queue are processed, completed,
and removed from the queue in FIFO order. Even though
requests are processed in order, the actual completion of
the transfer may occur out of order. However, the requests
must be removed in order regardless of the order of com-
pletion.

In addition to the send/receive model, the one-sided
model allows a process to specify both the originating
buffer and the remote target buffer, provided the remote
process has previously set up a region of memory to accept
incoming messages. For this type of operation, the target
process registers a buffer for remote memory put opera-
tions. The target process informs the origin process of the
location of the buffer, enabling access to the buffer.

This model also allows for the origin process to specify
the origin buffer at the remote process and the target buffer
in the local process. This get operation allows the origin
process to request that data from the remote process be
placed in the memory of the calling process. Get operations

require the remote process to notify the local process when
the remote buffer has been enabled to accept this type of
transfer.

Neither of the get operation nor the put operation con-
sumes a descriptor at the remote process, and the remote
process is not notified of any completed transactions. Com-
pletion of the one-sided operation at the remote process is
inferred through memory inspection or an additional syn-
chronization protocol. Remote memory write operations
are a required feature of VIA, while remote memory reads
are optional.

IV. MPI

The MPI standard [12] specifies an application program-
mer interface and semantics for data movement within a
set of cooperating processes. It has become the de facto
standard for user-level message passing in the high perfor-
mance, scientific computing community.

A key concept in MPI is that of a communicator, which
provides a safe message passing context for the multiple
layers of software within an application that may need to
perform message passing. For example, messages from a
support library will not interfere with other messages in the
application, provided the support library uses a separate
communicator.

Within a communicator, point-to-point operations and
collective operations are also independent. An application
can post several non-blocking receive operations and then
call the MPI barrier routine using the same communica-
tor. Messages used to complete the barrier operation will
be processed independently from the posted receive oper-
ations. Most implementations of MPI simply use an ad-
ditional “hidden” collective communicator to distinguish
peer communication from collective communication.

In addition to communicators, MPI point-to-point mes-
sages also have a an associated user-assigned tag that al-
lows for message selection within a communicator. Tagging
individual messages simplifies protocol processing within a
communicator.

User-level tags cannot be assigned to MPI collective op-
erations. However, in order for an MPI implementation
to allow multiple overlapping collective operations to be
in progress, each instantiation of a collective operation re-
quires an additional tag. For example, an application can
make successive calls to the MPI broadcast operation us-
ing the same communicator. In a spanning tree implemen-
tation of the broadcast, the root process need only send
the message to a few destinations. The next broadcast
operation the root process performs will likely follow the
same pattern. However, the destination processes will need
to distinguish the first broadcast message from successive
broadcast messages in order to preserve MPI’s message or-
dering semantics. An operation counter can be used to
tag messages in a collective operation to permit multiple
outstanding collective communications to occur.

MPI mandates a fully-connected process model where
each process is able to send to any process in the applica-
tion after the MPI library is initialized. Because an MPI



implementation cannot know the communication patterns
of the application a priori, point-to-point connections must
either be completely established during library initializa-
tion, or established as needed. Most MPI implementations
establish all connections during initialization to avoid com-
plexity and provide deterministic performance. Establish-
ing connections on a per-use basis requires that a “listener”
always be ready to establish a connection, increasing the
complexity of the implementation. Low latency operations
require that connections be established prior to performing
the communication operation.

MPI supports the concept of unexpected messages.
While the MPI standard can support completely un-
buffered implementations, the protocol overhead incurred
by such an approach is usually significant. Low latency
for short messages is usually achieved through eager sends
with receive-side buffering. The amount of buffering re-
quired at the receiver is dependent on several factors, such
as network latency and bandwidth, memory copy band-
width, and communication pattern.

V. CPLANT™

The Computational Plant is a large-scale, massively par-
allel computing resource composed of commodity com-
puting and networking components. The main goal of
Cplant™is to construct commodity cluster that is capable
of scaling to the order of 10,000 nodes in order to provide
the compute cycles required by Sandia’s critical applica-
tions. Because of this scalability requirement, Cplant™ has
been designed to address scalability in every aspect of the
machine.

The Cplant™Truntime system is modeled after the run-
time system of the Intel TeraFLOPS [13] machine. This
runtime system is dependent upon an underlying high-
performance system area network, not only for supporting
application message passing with MPI, but also for sup-
porting compute node allocation, application launch, de-
bugging and performance analysis tools, and parallel I/0.
The following describes the components of the runtime sys-
tem.

A. PCT

The Process Control Thread (PCT) runs on each com-
pute node in the cluster and is responsible for controlling
the processor and memory resources on the node it controls.
The PCT provides the application process on a node with
the user’s environment as well as the environment needed
to participate in a parallel application. It starts the appli-
cation process, redirects UNIX signals to the application
process, attaches the debugger to the application process,
terminates the application process, and recovers resources
after the application process terminates.

The PCT’s communicate with yod and the bebopd (de-
scribed below) at application launch and throughout the
life of a parallel job. A PCT contacts the bebopd to inform
the bebopd of the availability of the compute node’s re-
sources that the PCT manages. During application launch,
the PCT’s participating in the parallel job form a group

that allows for efficient group communications, such as
broadcasts and reductions, using tree-based algorithms.
Efficient communication allows the PCT’s in a large job
to quickly relay global information to compute node pro-
cesses as well as to the yod process. The latest incarnation
of the Cplant™ cluster is able to start a 576-node parallel
job in less than 10 seconds.

The PCT’s implement a space-shared system, where each
compute node maps a single parallel application process to
each processor on the node. Resources associated with the
node—compute, memory, and network—are divided evenly
among the application processes. Compute nodes do not
support virtual memory paging, and all available physical
memory is allocated to the application process.

B. Bebopd

The bebopd is responsible for allocating compute nodes
to parallel jobs as requested by user invocations of yod. Be-
bopd is also responsible for providing compute node status
information, such as the number of free compute nodes and
which nodes are allocated to which jobs.

Each PCT contacts the bebopd upon startup to make
bebopd aware of the available resources. Yod processes
contact the bebopd to reserve nodes for the parallel job.
The bebopd then contacts the PCT’s to insure that each
node is ready to participate in the parallel job. The be-
bopd then passes yod a list of the available compute nodes
on which the parallel job will run. Once the PCT’s have
finished hosting the parallel job, they contact the bebopd
to update their availability status.

C. Yod

Yod is the application loader for Cplant™and the main
interface to users. Yod contacts the bebopd to allocate a
set of nodes, contacts the PCT’s to insure their availability,
and then communicates with the primary PCT to move the
user’s environment and executable out on to the compute
nodes. Once a job has started, yod serves as an I/O proxy
for all UNIX standard I/O functions, including file I/O.

D. Fyod/Sfyod

Fyod and sfyod are yod-like daemon processes that run
in an I/O partition to provide a parallel I/O capability.
The fyod processes communicate amongst themselves to
determine access to secondary storage. The fyod processes
also interact with the application processes in the compute
partition to perform I/O operations on behalf of the appli-
cation.

E. Support Tools

Debuggers and performance tools for Cplant™ will also
rely on the high performance system area network. Debug-
ger processes on each node will likely need the same type
of group communication that the PCT’s currently use.

F. Computational Steering

The ability to manipulate the data of a running applica-
tion through a computational steering tool is desirable. It



is imagined that such a tool would need to communicate
information to application processes in the compute parti-
tion to influence the direction or focus of a computation, or
to dynamically manipulate the data set being worked on.

VI. REQUIREMENTS

The runtime environment and the MPI implementation
have requirements that must be met for Cplant™to scale
up to ten thousand nodes. Four characteristics of VIA
influence the ability to support the requirements of the
Cplant™runtime environment and MPI implementation:
the number of connections supported, the time needed to
establish a connection, the memory requirements for unex-
pected messages, and performance. The following discusses
the scalability effects of these features.

A. Number of Connections

For the runtime system and the MPI implementation,
the number of supported connections may be an obvious
limitation to scaling. What may not be obvious is the
how the number of connections can rapidly increase as the
number of computational nodes grows.

Given a cluster with 8192 node, both the MPI imple-
mentation and the PCT require fully-connected processes.
In addition, each PCT will need a persistent connection to
the bebopd for allocation and status messages. Each ap-
plication process requires a connection back to the hosting
yod process for standard I/0.

The allotment of connections for MPI assumes that only
a single connection is used per process. This may not be
the optimal solution for MPI performance and alternatives
are discussed in section VII-A below.

It is also likely that the application process will perform
I/0 to a parallel file system. In order to stripe data across
the parallel file system, each application may have a con-
nection to each I/O node. For a 8192-node cluster, let us
assume a ratio of 32 compute nodes per I/O node, resulting
in a I/O partition with 256 nodes.

Beyond the basic connections required for simply run-
ning an application, connections may also be needed for
debugging and communication with processes from exter-
nal applications.

In order to debug an application running on 8192 nodes,
each node will likely run a debugging process. Each de-
bugging process will probably require a connection to a
master debugger process. Like the PCT’s, these processes
will want to establish connections to form a spanning tree
to disseminate debugging information in a scalable fashion.

The setup needed for debugging is similar to what is
needed to perform computational steering. One can imag-
ine a computational steering tool that has a master process
that communicates with the individual application pro-
cesses to manipulate the process’ data while it is running.

A.1 Connections as Needed

The obvious approach to trying to reduce the number of
connections required by a large application is to establish

connections are they are needed. This approach has several
drawbacks:

o Performance degradation

— Initial send and receive operations may incur the con-
nection establishment cost

— Initial send and receive operations may incur connec-
tion breakdown costs
o Requires a “server” thread waiting to establish incoming
connections

— Consumes CPU cycles for polling the connection

— Consumes memory for the polling process/thread
e Loss of determinism and predictability

— Same application can behave markedly different on suc-
cessive runs

— Optimized collective routines may have to consider con-
nections as well as network topology
o Loss of fairness

— Wildcard receives may only come from sources with an
established connection

— Bounded number of connections per interface limits the
number of connections across independent processes on a
node

B. Time to Open/Close a Connection

For the runtime system, it is crucial that starting a par-
allel job on thousands of nodes happen in seconds, not tens
of minutes or hours. Given a cluster with 8192 compute
nodes, each MPI application process will need to establish
a connection with every other MPI application process. Let
us assume that these connections can be established at ev-
ery process in O(n) time. In order to establish 8191 con-
nections in a reasonable amount of time, say 30 seconds,
each connection will have to be established in

30 sec
8101 0.0036 sec T sec

While this performance is probably not unattainable,
connection establishment is typically a costly operation
compared to the data transfer operations. It possibly in-
volves some costly operations, such as system calls at both
ends, address resolution, and negotiation protocols. Con-
nection establishment is also typically not a target of in-
tense optimization. While VIA-based hardware vendors
are eager to announce latency, bandwidth, and processor
overhead performance, none have publicly announced con-
nection establishment timings. The above example also
does not include the time needed to establish connections
needed for standard I/O to yod or the parallel file system.

Likewise, it is also crucial that ending a parallel job, ei-
ther through normal or abnormal completion, happen in a
reasonable amount of time. Therefore, tearing down a con-
nection needs to be a fast operation, in order to minimize
time spent ending a fully-connected parallel application.
This overhead will be especially important when terminat-
ing an application in order to make resources available,
such as when checkpointing or killing a job that has ex-
hausted its allocated resources.



C. Resource Reservation

Given that there are a finite number of connections avail-
able, and the total time to establish connections may be
significant, reserving connections is a fundamental require-
ment. A process about to open 8191 connections must
be assured that the connections are available from a re-
source allocation standpoint before the process of establish-
ing connections begins. In order to establish connections
as needed, the ability to close a connection and immedi-
ately open a new connection is needed. However, there is
no guarantee that the process that closes a connection will
be able to allocate a new one.

D. Unezpected Messages

For MPI, the amount of buffering for unexpected mes-
sages should be a requirement based on the structure of the
application’s communication pattern and not the number
of nodes in the job. Efficient memory usage for message
passing is critical when scaling to the magnitude required
by Cplant™. In order for memory to be used effectively,
the communication subsystem must limit the use of mem-
ory to what is absolutely needed, and after having allocated
memory, it must make effective use of the memory.

E. Performance

Message passing performance, especially for MPI, is a
necessary, but not sufficient, component of scalability. It is
the goal of VIA to deliver low latency communication to the
application. However, VIA does not provide direct support
for the features of MPI that influence the performance of an
MPI implementation. For example, MPI requires support
for full connectivity, message selection, unexpected mes-
sages, and operations on arbitrary regions of application
memory. VIA does not support any of these features. It is
likely that the additional layers of software required to sup-
port these features will degrade the achievable performance
of the underlying data movement layer.

VII. ANALYSIS

The following is an analysis of specific features of VIA
that affect the ability to support the scalability and per-
formance requirements of the Cplant™Truntime system
and MPI implementation. Many possible implementation
strategies exist for both of these communication architec-
tures. The following sections evaluate some of the possible
strategies to expose their limitations.

A. Message Selection

VIA does not support message selection within a VI.
The memory associated with send and receive descriptors
is uniquely identified by a virtual address and a memory
handle. There is no support for determining the desti-
nation of incoming data based on information supplied in
the message. Since MPI has two distinct levels of message
selection, one for communicators and one for tags within
communicators, this lack of support places the responsibil-
ity of MPI message selection within library code running at

the user-level. Thus, the host processor must be involved
in all MPI message passing operations, limiting the amount
of overlap of computation and communication that can be
achieved.

There are two possible methods for implementing MPI
message selection on top of VIA. An MPI process could
create a VI for each communicator. For a job contain-
ing 64 processes, this method would require each pro-
cess to have 63 virtual connections established, one for
every other process, to support the global communicator
MPI_.COMM_WORLD. However, since point-to-point op-
erations and collective operations within the same commu-
nicator have a separate context, an additional 63 connec-
tions would be need to support collective communications
on MPI_.COMM_WORLD. Thus, for a 64 node job, 126
connections are required to support a single communicator.
Using this method for large jobs, it is possible to quickly
reach the upper limit on the number of allowable connec-
tions. Since this method does not address tag matching on
messages within a communicator, user-level processing is
still required.

An MPT process could perform all message selection at
the user-level. This method is currently used in most MPI
implementations where message selection is not supported
by the underlying transport layer. Requiring the user-level
process to perform message selection mandates that it also
perform queue management. Additional system tag, user
tag, and MPI protocol information must be sent with each
MPI message. As messages arrive, they are inspected to
determine their proper location, and the queue of posted
receive is searched. If a matching receive is not found, the
message is appended to a queue of unexpected messages.
If a matching receive is found, the data can be placed at
the location the user has specified, either by copying data
which accompanied the header or by directly streaming
data off of the network. Message selection and queue man-
agement at the user-level reduces the amount of processor
cycles available to the application, and defeats the purpose
of bypassing the host processor.

B. Unezpected Messages

VIA does not have any support for unexpected messages.
A receive request must be posted in order for an incoming
message to be deposited. Since the MPI standard does not
mandate buffering of unexpected messages, it is possible to
implement MPI without the additional buffering and proto-
cols necessary to support the arrival of messages for which
no corresponding receive has been posted. In practice, the
amount of protocol overhead needed to avoid intermediate
buffering of messages severely limits performance. Most
high-performance MPI implementations implement a two-
level protocol to reduce latency for “small” messages and
increase bandwidth for “large” messages.

In the short message protocol, the user data accompanies
the MPI header. The message is received into a system
buffer, the matching criteria is verified, and the user data
is copied from the system buffer into the user specified
buffer.



In the long protocol, the user data does not accompany
the MPI header, and the message is interpreted as a re-
quest to send (RTS). Once a matching receive has been
posted, the receiver sends a clear to send (CTS) message
back to the sender specifying the exact destination of the
data. The sending process can then send the user data di-
rectly into the user buffer at the receiver. Alternatively,
the receiving process could use a remote read operation to
get the message from the sender upon receiving the RTS
message.

Since the destination process must post a receive in order
for a VIA message to be delivered, the MPI implementa-
tion must insure that every process always has at least one
receive descriptor posted to handle MPI communications.
Insuring that a receive descriptor is always posted can be
done with either the send/receive operations or the one-
sided operations.

When the MPI library is initialized, a process can post
a receive to a VI before establishing connection. Once
the connection is established, the receive descriptor is acti-
vated. The sending process can then send an MPI message
that matches this descriptor. The receiver must receive the
message, copy the message into an intermediate buffer, post
another descriptor, and send a message informing the send-
ing process that it is safe to send another message. This
request-to-send(RTS)/clear-to-send(CTS) method of flow
control prevents a process from sending messages which
are not expected. The number of outstanding sends can
be increased so that the sender can generate several mes-
sages before waiting for an acknowledgment. Increasing
the number of outstanding sends increases the amount of
buffer space needed for messages. And, since this is only
a single connection, buffer space will be needed for every
connection.

The added overhead due to the RTS/CTS protocol is not
significant compared to the cost of the message transfer.
In effect, the definition of a long message is a message for
which the cost of the transfer is significantly larger than the
cost of the setup. The need for receive-side management
during message reception is based on two considerations:
scalability in memory use and the additional complexity
needed to manage the receiver’s message space.

First, we consider the issue of scalability in memory use.
Suppose that the short message size is 4096 bytes, we have a
machine with 4096 nodes, and each sender could have 4 out-
standing short messages. Without receiver-management
during the receive operation, the receiver will need to re-
serve space for all of the messages that the individual
senders could send. This results in a total of:

4096nodes - 4096Bytes - 4messages = 64Mbytes

Second, an additional protocol needs to be implemented
in order to know when it is safe to re-use slots. Even if the
underlying network has flow control at the network layer,
another level of flow control is needed for the MPI library
to insure that consecutive send operations do not overwrite
previous send operations that have not been processed by
the receiver.

One sided operations could also be used to insure that
a receive descriptor is always posted. The above strat-
egy RTS/CTS strategy could be implemented using remote
memory access operations. Each process could open up an
area of memory into which the sending process deposits
MPI messages. This method would eliminate the need for
the receiving process to continually post receives. How-
ever, since there is no notification of a completed put op-
erations at the target, the receiving process will have to
loop through the set of buffers looking for changes in mem-
ory to determine message arrival. However, this method
of searching for messages is not scalable, since the time
needed to perform the loop will increase as the number of
processes increases. And, using one-sided communications
does not eliminate the need for the RTS/CTS flow control.

C. Arbitrary Message Buffers

The guidelines that VIA offers suggest that processes
should not register and unregister memory regions fre-
quently, as this can lead to fragmentation of the page tables
on the network interface. MPI has no restriction on the lo-
cation of message buffers or on the number of buffers that
can be posted. Since VIA provides no mechanism to de-
termine whether a region of memory has been registered,
long protocol send and receive buffers will have to be reg-
istered when initiated and unregistered when completed.
The process could potentially impact applications which
transfer large amounts of data. Unfortunately, ping-pong
latency tests do not include the time needed to register
memory.

D. Completion Semantics

The RTS/CTS protocol needed to handle unexpected
messages could be implemented using a single VI. How-
ever, due to the strict FIFO ordering of posted requests, it
may be sensible to use a VI for short protocol, RTS, CTS,
and acknowledgment messages, and a separate VI for long
protocol data messages. The strict ordering of FIFO re-
quests does not allow an MPI implementation to process
requests in the order they complete. MPI has support for
waiting for the completion of a group of requests. While
the pairwise order of messages is preserved, MPI allows an
implementation to process messages in the order they have
completed. The VIA semantics do not allow an MPT im-
plementation to process shorter messages while waiting for
the completion of a larger message.

The completion semantics of VIA send operations are
also tighter than what MPI mandates. Completion of a
VIA send operation implies that the receive operation has
also completed. Whereas in MPI, completion of a standard
mode send operation only implies that the send buffer is
available to application. The non-local completion seman-
tics of VIA are also more restrictive than the MPI syn-
chronous mode send, which can complete when a matching
receive operation has started at the destination.



VIII. EXTENSIONS TO VIA

Some of the limitations of VIA that we have presented
could possibly be overcome by extending the semantics out-
lined in the current specification.

The concept of a connection bundle has been widely used
as an abstraction for aggregating endpoint resources [14].
Bundles allow an application to treat and manipulate con-
nections as a single resource. For example, a single API
call would be needed to create multiple connections, thus
allowing the underlying implementation to know how many
connections are required and possibly provide an optimized
path for allocating them. Connections in a bundle could be
replaced individually, in order to conserve resources when
closing and re-opening a connection.

Rather than assigning specific receive buffers to each VI,
a single pool of buffers could be shared between multiple
VI’s. A VI to which no receive descriptor has been posted
would simply allocate a buffer out of the pool of buffers to
process an incoming message. This mechanism would re-
duce the amount of buffering required for unexpected mes-
sages on large numbers of VI’s.

One solution to the problem of connection establish-
ment times is to implement VIA on top of a connection-
less transport layer. This strategy would essentially elim-
inate connection operations. For example, a VIA imple-
mentation on top of the Portals 3.0 API on Myrinet in
the Cplant™environment would not incur any connection
establishment or breakdown overhead, since processes are
fully connected when they are created.

IX. SUMMARY

In this paper we have presented an analysis of the abil-
ity of VIA to support the Cplant™runtime environment
as well as a high performance implementation of MPI. We
have provided an overview of VIA, the components of the
Cplant™runtime system, and have identified the specific
characteristics of VIA that may impact scalability and per-
formance. Some of these characteristics may carry over
from the VIA-based communication platforms, such as Gi-
ganet and Servernet, to the InfiniBand technology.

REFERENCES

[1] Steven H. Rodrigues, Thomas E. Anderson, and David E. Culler,
“High-Performance Local Area Communication With Fast Sock-
ets,” in Proceedings of USENIX’97, 1997.

[2] Compaq, Microsoft, and Intel, “Virtual Interface Architecture
Specification Version 1.0,” Tech. Rep., Compaq, Microsoft, and
Intel, December 1997.

[3] Infiniband Trade Association,
1999.

[4] Rossen Dimitrov and Anthony Skjellum, “An Efficient MPI
Implementation for Virtual Interface (VI) Architecture-Enabled
Cluster Computing,” in Proceedings of the Third MPI Dewvel-
oper’s and User’s Conference, March 1999, pp. 15-24.

[5] National Energy Research Scientific Computing Center,
MVICH - MPI for Virtual Interface Architecture, 1999,
http://www.nersc.gov/research/ftg/mvich/index.html.

[6] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjel-
lum, “A high-performance, portable implementation of the MPI
message passing interface standard,” Parallel Computing, vol.
22, no. 6, pp. 789-828, September 1996.

[7] R. B. Brightwell, L. A. Fisk, D. S. Greenberg, T. B. Hudson,
M. J. Levenhagen, A. B. Maccabe, and R. E. Riesen, “Massively

http://www.infinibandta.org,

(1]

[12]

(13]

[14]

Parallel Computing Using Commodity Components,” Parallel
Computing, vol. 26, no. 2-3, pp. 243-266, February 2000.

Mike Accetta, Robert Baron, William Bolosky, David Golub,
Richard Rashid, Avadis Tevanian, and Michael Young, “Mach:
A new kernel foundation for UNIX development,” in USENIX
Conference Proceedings, Atlanta, GA, 1986, USENIX.

Task Group of Technical Committee T11, “Information Technol-
ogy - Scheduled Transfer Protocol - Working Draft 2.0,” Tech.
Rep., Accredited Standards Committee NCITS, July 1998.
Arthur B. Maccabe, Kevin S. McCurley, Rolf Riesen, and
Stephen R. Wheat, “SUNMOS for the Intel Paragon: A brief
user’s guide,” in Proceedings of the Intel Supercomputer Users’
Group. 1994 Annual North America Users’ Conference., June
1994, pp. 245-251.

R. B. Brightwell, T. B. Hudson, A. B. Maccabe, and R. E.
Riesen, “The Portals 3.0 Message Passing Interface,” Tech. Rep.
SAND99-2959, Sandia National Laboratories, December 1999.
Message Passing Interface Forum, “MPI: A Message-Passing In-
terface standard,” The International Journal of Supercomputer
Applications and High Performance Computing, vol. 8, 1994.
Sandia National Laboratories, ASCI Red, 1996,
http://www.sandia.gov/ASCI/TFLOP/ Home_Page.html.

Alan Mainwaring and David Culler, “Active Message Appli-
cations Programming Interface and Communication Subsystem
Organization,” Tech. Rep., Computer Science Division, Univer-
sity of California at Berkeley.



